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Abstract

Temporal binding (TB) is the subjective compression between
a voluntary action and its associated outcome. It is regarded as
an implicit measure of the sense of agency; however, an under-
lying mechanism has yet to be agreed upon. Previous research
suggests memory as an alternative explanation for TB in two
publicly available datasets. We test this idea by implementing a
model within the ACT-R cognitive architecture and leveraging
its existing memory and time perception mechanisms to simu-
late participants from these datasets. Our simulations provide
evidence to suggest that memory and time perception mecha-
nisms can explain the pattern of results. Implications for tem-
poral binding and the sense of agency are discussed.
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Introduction

Temporal binding (TB) is assumed to be an implicit measure
of the sense of agency. TB is defined as the perceived sub-
jective compression of time between a voluntary action and
its associated outcome (Haggard, Clark, & Kalogeras, 2002).
In the seminal study by Haggard et al. (2002), participants
were asked to press a button at a time of their choosing; a
few hundred milliseconds later, there was an audible tone.
Participants were then asked to estimate the timing of their
button press and the tone. The key finding was that when the
action is voluntary—as opposed to involuntary—participants
subjectively estimated that their button press occurred later
than it objectively did. Furthermore, participants also sub-
jectively estimated that the tone occurred earlier than it ob-
jectively did. This compression, or underestimation, of the
subjective time interval between the action and its outcome
is what is known as femporal binding. Importantly, the op-
posite effect, or a repulsion of the subjective time interval,
occurred for involuntary actions (e.g., finger twitch produced
by transcranial magnetic stimulation of the motor cortex) and
their outcomes. This difference in the pattern of results be-
tween these two conditions led to the conclusion that TB is
an implicit marker for the sense of agency.

There is some theoretical debate in the literature over
whether it is the presence of a voluntary action, and there-
fore intentionality (Haggard, 2005), or the perceived causal-
ity between events (Hoerl et al., 2020) that is necessary to
elicit TB. One reconciliatory explanation for TB comes from
cue integration theory (Ernst & Banks, 2002). This theory
suggests the motor system optimally combines cues from dif-
ferent sources to reduce the overall variability of estimates.

Cues are weighted by their reliability such that information
from more reliable cues is more heavily weighted in the inte-
gration process. There has been one successful formal imple-
mentation of a Bayesian cue integration model in the context
of TB (Legaspi & Toyoizumi, 2019); it remains unclear if this
model can be applied to all timing estimation methods.

Though most TB tasks involve free recall, the role of mem-
ory has been largely underexplored in this literature. Re-
cently, a memory process was proposed as a potential expla-
nation for TB (Saad, Musolino, & Hemmer, 2022). In this
paper, a regression pattern was revealed by re-plotting partic-
ipant estimates from two publicly available datasets (Weller,
Schwarz, Kunde, & Pfister, 2020) as the difference between
the subjective responses and objective values (i.e., bias). Re-
gression here refers to the bias in estimations such that partic-
ipants, when making estimations, select a value closer to the
mean of intervals observed in the task. This regression pattern
replicated across conditions regardless of the agency manipu-
lation. Saad et al. (2022) then successfully simulated partici-
pant estimates using a Bayesian rational memory model. This
provided the first evidence that a memory mechanism could
account for estimations at the aggregate level in a TB task.

Relatedly, the role of time perception in eliciting the TB
effect has also been understudied in this literature. During
encoding, participants perceive the timing of or the inter-
vals between events. One mechanism that has been proposed
to explain this is a pacemaker-accumulator process, where a
pacemaker produces pulses at some rate, and these pulses are
counted in an accumulator. The perceived length of the inter-
val between two events is a function of how many pulses are
in the accumulator; more pulses correspond to a longer per-
ceived duration. This mechanism makes a prediction that a
shortening of a perceived time interval (i.e., the compression
characteristic of the TB effect) is a result of a slower pulse
rate leading to fewer pulses in the accumulator.

Fereday, Buehner, and Rushton (2019) empirically inves-
tigated whether internal clock slowing is a viable explana-
tory mechanism for TB. In two experiments, the authors in-
corporated a temporal discrimination task where participants
compared durations of causal (button press and a flash) and
non-causal trials (two flashes) to a reference duration (black
square presented on screen) and were asked to report which
interval length was longer. The authors calculated point of
subjective equality (PSE) values across conditions. The PSE



value represents the duration of the comparison interval (i.e.,
causal or non-causal) that is perceived as the same as the ref-
erence interval 50% of the time. The prediction is such that
lower values of PSE correspond to more compression or un-
derestimation (i.e., binding). The authors reported evidence
to support this prediction in both experiments.

Although the pacemaker-accumulator process makes ex-
plicit predictions which can be tested empirically, a formal
model of this process has never been implemented. Impor-
tantly, though much of the TB literature is focused on devel-
oping a theory of agency, there has not yet been an investi-
gation into how memory and time perception processes may
work together to influence or explain the temporal binding
effect. We aim to do just this. We hypothesize the regres-
sion pattern in the human data results from a memory mecha-
nism where participants estimate time intervals according to a
pacemaker-accumulator process and then use estimates from
previous trials during recall. We develop a cognitive model
to test this hypothesis; the model specifies mechanisms for
memory and time perception and is capable of simulating hu-
man performance in one condition in a TB task. We then
explore how estimating different parameters related to mem-
ory mechanisms in the model affect simulation results at the
aggregate and individual level.

We focus first on simulating one trial-type, action trials,
because they represent the most frequently used trial-types in
this literature. Additionally, our initial aim was to establish a
cognitive model as a viable means for simulating human be-
havior in these tasks. These results lay the groundwork for
future simulations using the same cognitive model to simu-
late the passive, comparison trial-type and therefore the entire
temporal binding effect. We discuss this and other ideas for
future work in the final section of the paper.

Method
Data Set

We model the publicly available data from experiment 3A in
Weller et al. (2020). Code for all analysis, figures, and sup-
plementary material included in this paper are also publicly
available (https://osf.io/6bkjp/). A detailed description of the
experimental method and procedure can be found in the orig-
inal Weller et al. (2020) paper.

We briefly describe the procedure for experiment 3A. The
experiment included three trial-types: action, non-action, and
baseline. At the beginning of each trial, participants were
asked to choose between an action and a non-action which
would each produce distinct outcomes. These trials were
called operant trials. During non-action trials, participants
chose not to act and a default outcome would occur; in the
action trials, participants acted by pressing a button at a tim-
ing of their choosing to change the default outcome. In the
baseline trials, there was no initial decision necessary, and
participants passively watched two events unfold: a progress
bar filled which ended in a “click” sound; then a ball launched
in a pre-specified direction.
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Figure 1: Reproduction of graphs from Weller et al. (2020)
depicting mean raw estimations across three trial-types (top
panel). Re-plotting these estimates as bias (bottom panel) re-
veals a consistent regression pattern across intervals. Data
plotted here are from 27 participants. * p < 0.05, ** p < 0.01

At the end of each trial, regardless of which type, partic-
ipants were asked to recall and report their estimate of the
interval between two events (i.e., either the keypress and ball
launch in action trials, or the clicking sound and ball launch in
non-action and baseline trials) in milliseconds using a slider
on-screen. Three different time intervals were used between
events: 100ms, 400ms, and 700ms. The presentation of these
intervals was randomized across the different blocks of trials.

At the beginning of the experiment, participants completed
a series of 20 practice trials, 10 baseline and 10 operant. Prac-
tice trials included time intervals between 100ms and 1000ms
in steps of 100ms. Participants received feedback about the
accuracy of their estimation at the end of each trial. Data was
not collected or analyzed for practice trials. During the main
experiment, no feedback was given.

Weller et al. (2020) reported statistical results comparing
TB values across trial-type and delay (N=27), and reported
two significant results for experiment 3A: more binding (or
more compression) for actions compared to baseline at the
700ms interval and for non-actions compared to baseline at
the 400ms interval. No other comparisons were significant.
From these results, Weller et al. (2020) concluded that “tem-
poral binding ha[d] [also] emerged for non-actions” (p. 8).
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Figure 2: Visualization of TBM model processes.

Figure 1 reproduces the original visualization of Weller et
al.’s results (top) and the regression effect (bottom) when par-
ticipants’ raw estimates are re-plotted as bias, or the differ-
ence between the average estimates and the actual length of
each interval. When the estimates are re-plotted as bias, a
clear regression pattern is revealed on all three trial-types.

The Temporal Binding Memory (TBM) Model

We developed a cognitive model called the Temporal Binding
Memory (i.e., TBM) model based on the action trials from the
Weller et al. (2020) TB task. The model was implemented in
ACT-R, which is a hybrid cognitive architecture used to un-
derstand and simulate human cognition. ACT-R contains a set
of modules which perform distinct cognitive functions and
communicate via requests relayed through limited-capacity
buffers. The TBM model used the imaginal, goal, vision, mo-
tor, procedural, declarative memory, and temporal modules.

The imaginal module holds the problem representation,
and the goal module represents the model’s current task fo-
cus. The vision module represents a visual attention system
containing both a “what” and a “where” subsystem. The mo-
tor module represents two hands on a virtual keyboard. The
procedural module, or production system, is a pattern match-
ing system which constantly searches for productions match-
ing the current state of the buffers using conditional state-
ments (i.e., if-then rules). Only one production can be exe-
cuted at a time. When a production is executed, or “fired”, the
state of the system changes, progressing the model through
a task. Knowledge is represented in the form of chunks in
declarative memory, which each have an activation value cor-
responding to the recency and frequency of the chunk with
some noise. Chunks are retrieved via the retrieval buffer in the
declarative memory module which searches through declara-
tive memory to find a chunk with the highest activation value
to satisfy the current request.

The temporal module, created to represent subjective time
estimation between two events (Taatgen, Van Rijn, & An-
derson, 2007), models time perception as a pacemaker-
accumulator process. The pacemaker generates pulses, and
the accumulator counts them. Tick lengths are noisy and in-
crease in duration as time progresses, which means the tem-

poral module is more accurate for shorter compared to longer
time intervals. Tick lengths are based on the following equa-
tions for the n'h tick.

fo = start + € (1)

th=axt,_1+€ )

The length of the first tick, #y, is controlled by the start pa-
rameter (default = .011) with some noise. The a parameter
(default = 1.1) affects the length of subsequent ticks. Noise
is added to tick lengths using the act-r-noise command, and
the s values for each are according to the following equations:

€1,5 = bx5xstart 3)

€,s=bxaxt,_ )

The b parameter is set to 0.015. The model recalls the inter-
vals on each trial by accessing the current pulse value in the
temporal buffer and reporting the tick count.

ACT-R models are cognitive models that specify mecha-
nisms at the algorithmic level (Marr, 1982) and therefore re-
quire simulation of both the task and cognitive processes. As
this is the first cognitive model of a TB task (to our knowl-
edge), we aimed to replicate the major components of the ex-
perimental design (i.e., interval lengths, outcome modality,
presence of feedback, and practice trials). However, we sim-
plified stimuli and simulated action trials first, as these are the
type of trial in which TB has been reported most frequently.

Figure 2 displays the steps the model completed to estimate
time in our modified task. Each rectangle represents a sepa-
rate production. Letters were used as cues for the beginning
and end of the interval that was timed by the model. During
both practice and test trials, the presentation of the first stim-
ulus, “A”, initiated the proceeding course of events. First, the
model looped through a standard find-attend-encode loop by
which the visual system located and then encoded the visual
information on the virtual screen. After encoding, the model
pressed the “A” key on the virtual keyboard, initiating the tim-
ing process by making a temporal buffer request to start tim-
ing in ticks. This triggered the presentation of another visual
stimulus, “Z”. The same find-attend-encode procedure was
completed in response to this second visual stimulus before
proceeding to the store-instance-feedback production. The
tick count was stopped once the letter “Z” was perceived.

During each run, the model completed two different types
of trials: 20 practice and 150 test. The key factor differenti-
ating practice and test trials is that during practice trials, the
model received feedback in the form of a real-time millisec-
ond interval value which was then paired with the tick count
from the temporal buffer and stored in declarative memory.
During test, no feedback was given, and the tick count value
on each trial was paired with a guess. This guess was in-
formed by the chunks in memory that were formed during
practice. We will now describe each trial type in detail.

Practice trials heavily influenced model performance as
they generated chunks that were later retrieved by the model



and were the basis for the model’s responses during test tri-
als. During practice trials, feedback was provided after esti-
mations to mimic the participants’ experience in the original
study (Weller et al., 2020). This feedback was used to build
chunks which contained two slots: tick count (from the tem-
poral buffer) and real-time delay which stored the actual de-
lay given as feedback. Each chunk was encoded into declara-
tive memory, and the entire process was repeated. The length
of the interval between the action and outcome was manipu-
lated depending on the trial type. During practice trials, we
randomly presented twice each the intervals from 100ms to
1000ms in steps of 100ms, for a total of 20 practice trials.

During test trials, the process was similar except only three
intervals were used (100, 400, and 700ms), and there was
no feedback provided. The blending mechanism (Lebiere,
1999) was used to retrieve chunks from declarative memory.
The blending mechanism computes a weighted average over
chunks in memory learned during practice such that chunks
with a higher likelihood of retrieval, determined by activation,
carry more weight. The ACT-R activation equation,

Ai=Bi+Si+P+¢; (®)]

includes a: 1) base level term, B;, for recency and frequency
of use, 2) spreading term, S;, for context effects, 3) partial
matching term, P, for degree of match with retrieval cues,
and 4) noise term, €;, for noise in memory. The blending
mechanism uses the equation,

V =argmin ) Pi(1— sim(V,V;))? (6)
14 i

to produce a value that minimizes the sum of all squared dis-
similarities, ((1 — sim(V,V;))?, of each chunk, i, between the
consensus value V and the chunk value V;, and weights it by
its probability of retrieval,

eAi/I

P= g

@)

The probability of retrieval is a function of the activation for
a chunk, eAilt , normalized by the activation of all retrieved
chunks, ¥ ; Ailt,

During recall, the current tick count at the time the second
stimulus appeared was used as a retrieval cue to find a match
in declarative memory in the retrieve-instance-feedback pro-
duction. We defined a linear similarity function for ticks
in the temporal buffer which impacted how chunks were
weighted during this retrieval process and how the blend-
ing average was computed. As ticks in the temporal buffer
operate according to a log-scale (to reflect the scalar prop-
erty of time estimations), we thought it appropriate to define
ticks as having a relationship such that tick values were most
similar to themselves with linearly decreasing similarity. At
the end of each trial, a new chunk was created pairing the
blended real-time value (i.e., the guess) and the tick count.
This process was repeated over 150 trials. The accumulation
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Figure 3: Best fitting model from analysis testing mismatch
penalty (:mp) parameter values.

of chunks during the experimental trials resulted in a gradual
regression pattern in model estimates.

Before comparing model and human performance at the
aggregate level, we completed a series of simulations to es-
timate the mismatch penalty (:mp) parameter as there is no
default. The :mp parameter specifies the penalty, (P;), in the
activation equation and calibrates the degree of regression to
the mean in the model. Lower values of :mp correspond to a
wider range of chunks taken into account during retrieval. We
tested values of :mp from 1 to 5 in steps of 0.5, keeping all
other parameter at their default values, and we simulated 10
model runs per parameter value for a total of 90 model runs.

Results

The results from the :mp estimation are shown in Figure 3,
where the best fitting model and human performance at the
aggregate (across trials and individuals) are plotted together.

To determine the model with the best quantitative fit, we
computed the root mean squared error (RMSE) for the differ-
ence between each model’s simulated estimates compared to
the human estimates. We also computed a Pearson correla-
tion between the human and model estimates across the three
interval lengths (r = 0.99, p = 0.04). The model with :mp =
4 produced the lowest RMSE = 67.02.

Though the adjustment of the :mp parameter improved the
fit at the aggregate level, there was still a substantial differ-
ence in variance between the human data and model fit. This
difference can be seen in Figure 4 which plots individual par-
ticipant and model run data at the trial level using the param-
eter settings from the first analysis. When comparing across
timing intervals (colored dots), it is clear that the variability
in the model is substantially less compared to the human data.
These results indicate that the model was not capturing indi-
vidual level behavior.

To investigate this, we explored one parameter that repre-
sents a plausible way to account for the individual variability:
blending temperature (:tmp). The :tmp parameter controls
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Figure 4: Individual variability and linear fits across human
(top) and model simulation (bottom) data. Data points repre-
sent an estimate on a given trial across the interval lengths.

the preference to blend chunks in memory. Higher values of
:tmp correspond to more blending over chunks and, therefore,
more regression to the mean of chunks. Lower values of :tmp
correspond to a retrieval process closer to the best match, or
“winner-take-all”. We tested 30 values of :tmp sampled from
a normal distribution (u = 0.5, ¢ = 0.1). For this analysis, we
kept all other parameters at default, except for :mp = 4.

Figure 5 depicts the results from this analysis. We com-
puted the RMSE to evaluate quantitative fit of the model sim-
ulation to the human data. Here, the model with the lowest av-
erage difference (RMSE = 62.29) used a :tmp value of 0.453.
It produced only a marginal improvement from the first anal-
ysis (RMSE = 67.02) which did not set the :tmp parameter
and only adjusted :mp to 4. We computed a correlation be-
tween the human data and model fit across the three interval
lengths (r =0.99, p < 0.001) which represented a good quan-
titative fit at the aggregate level. However, this value of :tmp
did not improve fit to the individuals. As this was the aim of
this analysis, these results indicate adjusting this parameter in
future simulations may not be necessary. !

Discussion

Here we have developed and implemented the first cognitive
model of a TB task. Using core components from the ACT-
R architecture and default settings for all but one parame-
ter (mismatch penalty), our model was able to simulate hu-
man time interval estimates in action trials from a TB dataset

'We conducted an additional analysis to investigate how varying
the amount of noise added between ticks, via the :time-noise pa-
rameter in the temporal buffer (b, in Equations 3 and 4), influenced
variance in timing estimates. We assessed values of 0.005 to 0.1 in
steps of 0.015 keeping all other parameters at default except :mp =
4. The best fitting value was :time-noise = 0.03, which is slightly
higher than the default value 0.015. The minimum RMSE = 51.11
improved model performance at aggregate, but not substantially
enough at the individual level to warrant adjusting the default set-
ting. This represents an interesting area of investigation for future
work. See https://osf.io/6bkjp/ for complete details.

Blending Temp Analysis Results
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Figure 5: Best fitting model from the blending temperature
(:tmp) parameter analysis.

(Weller et al., 2020).

After defining a similarity function to specify how chunks
were weighted during retrieval, our first aim was to estimate
the appropriate value for the :mp parameter. Using the min-
imum RMSE value as the primary metric for quantitative fit,
the simulations suggested only adjusting the :mp parameter to
4. This is relatively high in the range of values tested. Con-
ceptually, this means that to simulate participant estimations
in this task, the model needed a higher penalty against chunks
in memory which limited the number of chunks that are aver-
aged in memory during a single retrieval to those that were a
close match to the current retrieval request.

In our second analysis, we evaluated sources of individual
variability using another parameter affecting memory mech-
anisms, the :tmp parameter. The best fitting value provided
a marginal improvement of model fit at the aggregate across
three time intervals but did not improve variability compara-
ble to human performance. Future work could allow variation
in the :tmp parameter to represent individual differences in
humans regarding whether they use more (i.e., blending) or
fewer (i.e., single best match) previous instances in memory
to inform current estimates of time intervals.

In the TBM model, parameters affecting memory mech-
anisms within ACT-R were the primary influence on model
performance at the aggregate level. This provided some ad-
ditional evidence to suggest that memory mechanisms are
capable of capturing the patterns in human data from a TB
task. Surprisingly, our investigation of the timing mechanism
(:time-noise) did not appear to affect model performance at
the individual level as much as expected (see Footnote 1 for
more details). Increasing values of the :time-noise parame-
ter increased individual level variability but worsened the fit
at the aggregate level, indicating a trade-off. It may be the
case that conducting an analysis similar to the one we suggest
for blending temperature (i.e., altering :time-noise parameter
value to fit individuals) may represent a feasible way forward



in investigating sources of noise at the individual level.

It is also possible other aspects of the temporal buffer may
affect model performance in this task. As mentioned in the
introduction, according to Fereday et al. (2019) one might
expect a slower clock rate when comparing action trials to
passive ones. In the ACT-R architecture, the :time-mult pa-
rameter, which controls a multiplier constant applied to each
tick, could be adjusted to formally investigate this hypothe-
sis. Specifically, one might test a range of values higher and
lower than the default value (1.1) to investigate whether this
can capture any observed differences between conditions.

It is important to note that so far the majority of the anal-
yses we describe here have been conducted at the aggregate
level. However, there is evidence to suggest that the TB ef-
fect is not consistently present at the individual level, and cur-
rently this variability is not captured by this model. There are
some reasons why this might be the case. For instance, one
can interpret the aggregate model fit to represent one partic-
ipant completing the experiment 10 times without variation.
The observed variability in the human data then would po-
tentially reflect an aggregation over different models using
different parameter values. Future work should aim to inves-
tigate sources of variability across individuals and possible
explanatory mechanisms.

Future work might also investigate the sources of individ-
ual variability in estimations. Currently the information in
declarative memory is created in the same way across indi-
vidual model runs (i.e., assuming no prior experience before
beginning the task). This is due to the fact that we did not
have access to practice trial data. Seeding each model run
with actual practice trial data may better simulate the individ-
ual variability in the human data. In lieu of practice data, it
may be useful to simulate a large number of practice trials at
sub-second interval lengths to build a more realistic declara-
tive memory store. Additionally, it may be useful to incor-
porate individual differences in the initial guesses the model
makes during the task (e.g., Cranford et al. (2021)). Partici-
pants’ initial guesses may be based on environmental priors
(i.e., we expect our button press to lead to an outcome af-
ter a very short interval, typically less than 100ms in length).
These expectations may vary across participants, which may
lead to some of the variability present at the individual level.

As mentioned in the introduction, due to the preliminary
nature of this work, our analysis did not include a simulation
of the comparison trial-type that is used to determine the pres-
ence of the TB effect. In experiment 3A Weller et al. (2020),
a baseline trial-type wherein participants passively observed
two events, was the comparison of interest for the action tri-
als. Baseline trials can be simulated by removing the initial
voluntary action in our current task, so that the model pas-
sively observes and times the interval length between the pre-
sentation of the two visual stimuli (e.g., the letters “A” and
“Z”). The estimations in this trial-type can then be compared
to the action trial-type that we have developed here to deter-
mine whether the TBM model can account for the entire TB

effect (i.e., more compression in the action trial-type com-
pared to the baseline trial-type). We suggest first simulating
both trial-types using the same core components and param-
eter values to evaluate whether additional specifications are
necessary to produce the TB effect.

In conclusion, we have successfully developed and imple-
mented the first cognitive model of a temporal binding task.
An ACT-R model, using declarative memory and time per-
ception mechanisms, provided a good qualitative fit to human
data. These results, while still preliminary, add to the grow-
ing evidence that memory mechanisms can account for results
from temporal binding studies. Future work should evaluate
whether specifying an agency mechanism is necessary to ac-
count for the temporal binding effect.
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