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Abstract

Temporal Binding (TB) is standardly regarded as an implicit
measure of the sense of agency (Haggard, 2017). Though the
TB effect is robust, an underlying mechanism has not been
agreed upon (Hoerl et al., 2020). Here we propose a memory
process as an explanation for the observed error in two publicly
available datasets. We first replotted the data and found that on
average, across both experiments, participants overestimate the
length of the shortest timing interval and underestimate the
longest interval, a classic regression to the mean pattern.
Summary statistics extracted from the data from each
experiment were then used as parameters in a simple Bayesian
model of memory. Model simulations reproduced the
behavioral data for almost all timing intervals and
experimental trial-types across two experiments. Adjusting
one of the parameters in the model (prior mean for actions)
resulted in an improved qualitative fit. We suggest that other
more likely sources of error, apart from experienced agency,
may account for this result.

Keywords: temporal binding; Bayesian models of cognition;
sense of agency; memory

Introduction

The sense of agency is defined as the feeling of control over
our actions and their associated consequences (Haggard,
2017). Though this experience can be assessed explicitly by
asking individuals to report their feelings of control over
outcomes in their environment (Daprati et al., 1997; Metcalfe
etal., 2013; Metcalfe & Greene, 2007; Spengler et al., 2009),
it has also been assessed implicitly via measures like
temporal (also sometimes referred to as “intentional™)
binding. Temporal binding is the perceived subjective
compression of the timing interval between a voluntary
action and its associated outcome.

Temporal binding is often (though not exclusively — see
Haggard et al. (2002)) measured using a timing estimation
method known as interval estimation (e.g., Caspar et al.,
2016; Engbert et al., 2008; Fereday et al., 2019; Obhi et al.,
2013; Pfister et al., 2014; Seghezzi & Zapparoli, 2020; Zhao
et al.,, 2016). In the prototypical voluntary action ftrial,
participants are asked to perform an intentional voluntary
action, e.g., a button press, which triggers a tone 250ms later.
At the end of each trial, participants are asked to freely recall
their best estimation (in milliseconds) of the length of the
interval that elapsed between the two events. This trial-type
is typically compared to a baseline, observational (a.k.a.
passive) condition where participants (most commonly) hear
two computer-generated tones separated by 250ms and are

again asked to recall the interval that elapsed between the two
events. Participants, on average, show increased compression
of the interval between events in the voluntary action
condition compared to the baseline, which is referred to as
the temporal binding effect.

Since the original report (Haggard et al., 2002), the effect
has more than 200 reported replications across multiple
distinct timing estimation methods (e.g., Barlas & Kopp,
2018; Berberian et al., 2012; Cavazzana et al., 2014;
Takahata et al., 2012; see Tanaka et al., 2019 for a review).
Several mechanisms have been proposed to explain this
effect, though no consensus has been reached (Hoerl et al.,
2020). Initially, binding was thought to be specific to
voluntary actions and so a pre-reflective motor mechanism
was proposed (Haggard et al., 2002). This account posits that
an implicit “feeling of control” yields temporal binding, a
process that is thought to be driven by a motor control system
that does not require conscious reflection.

However, there have been reported instances where
binding is present in passive/observational (Graham-Schmidt
et al., 2016, other condition; Humphreys & Buehner, 2010;
Poonian et al.,, 2015; Suzuki et al., 2019) as well as
involuntary actions (Borhani et al., 2017; Buehner, 2015;
Graham-Schmidt et al., 2016, passive condition; Kirsch et al.,
2019). As a result, another account proposes that the
perceived causality between two events can by itself elicit
binding. Importantly, this account predicts that binding can
occur with cause/effect pairs that do not involve
intentionality or voluntary motor action (Hoerl et al., 2020).

More recently, cue integration, borrowed from perception
research (Lush et al., 2019; Moore & Fletcher, 2012), has
been suggested as a potential mechanism underlying the
binding effect. Cue integration is the process by which an
observer combines information associated with multiple cues
from different domains to decrease error in perception. The
cues are weighted differentially based on the perceptual
certainty associated with each. For example, in the voluntary
action case, the timing of the button press has more
perceptual certainty compared to the timing of the first tone
in the baseline trials (i.e., participants can control the timing
of their voluntary actions which increases certainty compared
to the occurrence of the first tone in the baseline condition
which they do not control). Therefore, the estimation of the
outcome is pulled toward the event with higher perceptual
certainty which can explain the observed compression seen
in binding. A Bayesian process has been suggested as a
potential mechanism for optimally combining the
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Figure 1: Reproduced results from Weller et al. (2020) experiment 3A (left) and 3B (right) publicly available datasets.
Bars depict average raw estimations by trial-type across intervals. Horizontal dotted black lines indicate average baseline

error estimates for each timing interval.

information from these varying cues (Moore & Fletcher,
2012).

Within this literature, a common assumption is that
temporal binding is an implicit marker of agency. Therefore,
the proposed accounts attempt to explain the effect by
looking at the differences in potential agency between
experimental conditions. However, these differences may not
be related to agency.

To see this, consider the fact that at its core, the interval
estimation task is a free recall task in which, regardless of
trial-type, participants are asked to encode a time interval
between two events and then recall their estimation of that
interval at the end of each trial. Approaching the problem
from the perspective of memory opens the possibility that the
effect may be explained, for example, by differences in how
participants encode information across trials, regardless of
agency. Therefore, the contribution of memory to the
observed binding patterns should be assessed.

Here we suggest that a simple memory mechanism can
entirely account for the results reported in two publicly
available temporal binding experiments (Weller et al., 2020,
experiment 3A and 3B). We first demonstrate that when
replotting the data as a function of the error (or bias from the
objective timing) in the participants’ interval estimates, a
classic regression to the mean pattern appears. This is
important, as regression to the mean is a well-known pattern
in time perception and memory. For example, Vierordt’s law
is a well-established regression effect in time perception
where participants tend to overestimate short durations and
underestimate long durations (Lejeune & Wearden, 2009).

What’s more, Huttenlocher et al. (2000) reported results
from memory experiments where participants learned to
represent a distribution over a particular stimulus feature
(e.g., sizes of fish) and then regressed to the mean of that
distribution when recalling. Here, we propose that
participants might be doing the same thing in the temporal
estimation task. To find out, we simulated observed results
using the same Bayesian rational memory model that has

been successfully implemented in other studies (Huttenlocher
etal., 2000; Hemmer et al., 2015; Persaud & Hemmer, 2014).
These results show, for the first time in the temporal binding
literature, that we can qualitatively account for the pattern of
results in two temporal binding studies with a memory
mechanism and, importantly, without appealing to agency or
causal inference as additional underlying mechanisms.

Data Sets

The data described here come from a publicly available paper
(Weller et al., 2020, experiments 3A and 3B). Code for all
analysis, figures, and supplementary material included in this
paper are also publicly available (https://osf.io/juh5y/). A
detailed description of the experimental method and
procedure can be found in the supplementary material as well
as in the original Weller et al. (2020) paper.

Here we briefly describe the procedure for both
experiments 3A and 3B. Both experiments included three
trial-types: action, non-action, and baseline. At the beginning
of each trial, participants were asked to choose between an
action and a non-action which would each produce distinct
outcomes. In the non-action trials, participants chose not to
act and a default outcome would occur, whereas in the action
trials, participants acted (i.e., pressed a button at a timing of
their choosing) to change the default outcome. Note that a
participant could in principle choose not to act on any trials.
However, only participants with a minimum of five or more
observations per cell were included in the final analysis.

At the end of each ftrial, regardless of which type,
participants were asked to recall and report their estimate of
the interval between two events in milliseconds using a visual
analog scale presented on-screen. There was also a baseline
trial-type which was completely passive (i.e., no initial
decision to act or not) and was compared to the other two
trial-types. Three different time intervals were used between
events (100ms, 400ms, and 700ms in 3A; 300ms, 500ms, and
700ms in 3B). The presentation of these intervals was
randomized across the different blocks of trials. Data
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Figure 2: Regression lines by experimental trial-type for Weller et al. (2020) experiment 3A (left) and 3B (right). Plots
indicate average error (objective value subtracted from the average subjective estimation) of each interval across
experimental trial-types. In experiment 3A, the slope for actions is significantly steeper compared to the other trial-types
driven by larger average underestimation at the longest timing interval. For experiment 3B, the general pattern across trial-
types is similar to results from experiment 3A though there are qualitatively larger differences in slopes across conditions

indicating more noise in the memory process.

presented here are from 27 participants from experiment 3A
and 40 participants from experiment 3B.

In the original publication (Weller et al., 2020), the authors
compared trial-type and delay, and reported two significant
results for experiment 3A: actions compared to baseline at the
700ms interval and non-actions compared to baseline at the
400ms interval. There were also two significant results for
experiment 3B: actions compared to baseline at the 700ms
interval and non-actions compared to baseline at the 700ms
interval. No other comparisons were significant. From these
results, the authors concluded that “temporal binding ha[d]
[also] emerged for non-actions™.

Figure 1 depicts the average raw estimation across the three
trial-types (actions, non-actions, and baseline) and across the
three different timing intervals used. These plots show a
qualitative reproduction of the published results.

Reanalysis

We re-analyzed, replotted, and simulated the original results
after using exclusion criteria reported in the published paper.
While we sought to reproduce and present the data exactly as
Weller et al. (2020) published them, our reanalysis did
produce some minor differences in the total number of trials
removed due to exclusionary criteria. Our reanalysis removed
a total of 2.63% of trials due to error or SD criteria from the
data for experiment 3A and a total of 2.46% of trials from the
data for experiment 3B which are comparable to those
reported in the paper (2.1% and 2.2% of trials in 3A and 3B,
respectively).

To evaluate the regression effect, we first replotted the raw
estimates as error, or the difference between the average
estimates and the objective timing at that interval. The
regression pattern can clearly be seen in Figure 2 for
experiments 3A and 3B. There is a consistent overestimation
of the shortest interval (i.e., the value below the overall mean
across intervals) and underestimation of the longest timing

interval (i.e., the value above the overall mean) across both
experiments. All regression lines have a negative slope across
the three intervals and are significantly different from zero
(p <0.05).

Note that sequential dependencies (i.e., the influence of a
characteristic of the stimulus immediately prior to the current
stimulus on the recall of the current stimulus) have been
suggested as a potential cause of the regression pattern that is
typically seen in memory experiments (Sailor & Antoine,
2005). An important step was to ensure that this pattern of
results cannot be explained by the effect of sequential
dependencies.

To that end, we first separated the trials into three groups:
cases where the previous trial’s interval was longer than the
current trial, cases where the previous trial’s interval was
shorter than the current trial, and cases where the previous
trial’s interval was the same as the current trial. In cases
where the interval in the previous trial was shorter, we expect
to see underestimation since the response will be drawn
toward the shorter interval in the previous trial. We expect to
see the opposite case when the previous trial’s interval was
longer. The most informative case is when the previous trial’s
interval was the same as the current trial. If the error
disappears on these trials, this would suggest that sequential
dependencies on the other trial types are driving the aggregate
effect. However, if the error remains, a different explanation
is in order.

We completed this analysis by plotting the frequency of all
error across participants for cases where the previous trial’s
interval was the same. We further split this data into three
subsets (over length of intervals) and calculated the mean at
each interval. We also completed Bayesian paired samples t-
tests evaluating whether these means differed significantly
from the overall means for each interval length. These
analyses provided evidence in favor of the null hypothesis
and confirmed that sequential dependencies do not account
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Figure 3: Results of the Bayesian memory model simulation (including 95% Cls) for experiment 3A (top row) and experiment
3B (bottom row) across experimental trial types. Model parameters extracted from the data using overall averages for prior
mean and variance as well as memory noise value based on overall standard deviation from each experimental condition.
Model qualitatively fits well for all intervals and trial-types across both experiments except for action trials in experiment 3B.

for this pattern of results (see Tables S1 and S2 in
supplementary material for more detailed information). That
is, the regression pattern remained for the “same as current”
trials.

A Bayesian Model of Memory

Next, we used a Bayesian rational memory model to simulate
the results from experiments 3A and 3B. As previously
mentioned, our goal for implementing this model in this
context was to provide a plausible alternative explanation for
interval timing in this context. We planned to evaluate
whether a memory mechanism could account for this pattern
of results without appealing to the influence of experienced
agency. The model we use here is based on the Bayesian
models reported in Huttenlocher (1991, 2000) as well as
Hemmer and Steyvers (2009). This simple Bayesian memory
model assumes that recall is a combination of noisy memory
traces and prior expectations of interval lengths learned
across the trials.

In the Weller et al. (2020) experiments, an observer is faced
with the task of recalling features of a study stimulus (e.g.,
estimating a time interval). The observer’s goal is to
reconstruct the original study stimulus feature 6 using noisy
samples y retrieved from memory. Bayes’ rule gives a
principled method for combining prior expectations and
evidence from memory to calculate the posterior probability,

p(8ly) < p(y|6)p(6) Eq (1)

The posterior probability p(8]y) describes how likely

attribute values 8 are given the noisy memory contents y and

prior expectations about the attributes. Suppose the feature
values of the stimulus are Gaussian distributed,
6 ~ N(u*,t*), where p*and t* are the prior mean and
precision of the feature values. Further suppose that the
samples y being drawn from memory have a Gaussian noise
distribution centered on the original studied value,
y ~N(6,¢). The variance of the noise process, 1,
determines the resemblance of the stored representations to
the original feature of the study stimulus. Suppose the
observer also has some expectations about the general
distribution of attributes, 8 ~ N(u,7). This distribution
corresponds to the prior in the observer’s memory model and
assumes that the observer has learned the environmental
statistics which can be used as a proxy for the prior in the
observer’s model. That is, p = u* and T = 7 *. Bayesian
techniques can now be used to calculate the posterior
distribution:

Oly, Y, u,t ~ N(%,lp+r) Eq (2)

The mean of the recalled stimulus values (e.g., time
intervals) is a weighted linear combination of the prior mean
u and the mean of memory content y. The prior mean u is
weighted more heavily when the prior has a higher precision
(t) or when the memory noise increases. This corresponds to
the intuition that if the prior is strong, it will exert a strong
influence. Similarly, if memory contents are very noisy, the
prior will also exert a strong influence. This linear
combination explicitly predicts the regression pattern that is
well-known in memory.



Simulation Results

We applied this simple Bayesian rational model of memory
described above to the Weller et al. (2020) data. The goal of
this analysis was to compare the predictions of the Bayesian
model of memory and the empirical data at a qualitative level.
In the model, the priors were based directly on the
environmental statistics, i.e., the average over subjective
estimates. However, rather than hand fitting the parameters
ad hoc, we used the summary statistics from the experimental
data as parameter input. For the prior in Eq. 2, we used
distinct mean u and precision t values corresponding to the
overall error values from each experiment (u = 454.78ms
[overall mu] and T=91.11ms [overall SD] for experiment 3A
and p = 448.72ms [overall mu] and T = 97.95ms [overall SD]
for experiment 3B). Furthermore, we assumed the same prior
and memory noise setting for all participants (i.e., no
individual variation). We chose to use prior parameter values
extracted from aggregate participant responses as we
assumed that participants learned the mean of the intervals
over the course of the experiment. We felt this choice was
appropriate considering there is evidence to suggest that
priors are learned early in an experiment (Berniker et al.,
2010). We also completed simulations using the mean of the
stimulus feature (« = 400ms for EXP 3A and x« = 500ms for
EXP 3B) and did not find a substantial difference in
qualitative fit (See Supplemental Material for more details).
For the memory precision y, we used a value of 90, which is
based on the overall standard deviation of timing estimates in
the experimental data (while it is technically unitless, this
value could be interpreted in milliseconds). We obtained
1000 samples for each distribution and simulated the same
number of participants, trials, and time intervals that were
used in each experiment. The model simulated raw
participant estimations for each trial which were then used to
calculate the bias on each trial. Figure 3 depicts the simulated
responses compared to those obtained from participants in the
Weller et al. (2020) study. The triangles represent the
maximum a posteriori (MAP) estimates from the posterior
predictive recall distribution simulated from the model with
a 95% CI around each simulated mean.

For both simulated and observed responses, the results
show effects of the prior (i.e., the overall mean across
intervals). For experiment 3A, Figure 3 (top row) shows that
the model qualitatively simulates the overall effect. The time
intervals that are shorter than the mean of time intervals (i.e.,
400ms) are overestimated while the time interval that is
longer than the mean is underestimated. The model
qualitatively fits best for actions and non-actions while
under- and over-estimating the error in the 400 and 700ms
timing interval baseline trials, respectively. For experiment
3B, Figure 3 (bottom row) shows that the model provides an
excellent fit for baseline and non-action trials though
interestingly, it does not fit action trials as well.

This last result appears to be due to a substantially different
y-intercept value in the regression line which suggests that
the parameter values used in the model for action trials in this
experiment are not likely the ones participants used. It is
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Figure 4: Bayesian memory model simulation results
(including 95% Cls) for Weller et al. (2020) experiment
3B action trials. Decreasing the value of the prior mean
parameter for action trials only improved the overall
qualitative fit of the model to the trial data. This indicates
that participants may have used a different prior mean
when making estimations during action trials in this task.

plausible that there may be more memory noise in the
memory process for these trials compared to the baseline
trials. It could also be that participants used a different prior
mean or variance to make their estimates for these trials. To
assess this, we tested larger and smaller memory noise values
without changing the prior parameter values which did not
improve the qualitative fit (see Supplemental Material Figure
S2). We then varied the prior mean parameter value in the
model and found that a value of 350 (slightly smaller than the
448.72ms value used for the simulations in Figure 3)
improved the fit substantially (see Figure 4).

Discussion

We investigated whether a memory process could explain the
pattern of results reported in two publicly available temporal
binding datasets. After replotting the raw estimations of
timing intervals as error (or the difference between the
estimations and the objective timing), a clear regression
pattern emerged. We implemented a well-established
Bayesian rational memory model and found that the model
qualitatively simulates the experimental data across three
different trial types. Using parameter values extracted from
the data resulted in a good qualitative fit across all intervals
and trial-types in experiment 3A. The model also produced a
good qualitative fit for non-action and baseline trials but did
not produce as good a qualitative fit for action trials in
experiment 3B.

The improved fit using a lower value for the prior mean
parameter suggests that participants may be regressing to a
shorter interval length when recalling estimations after action
trials as compared to other trials in the experiment. This could
be because participants perceive the time between their
actions and the outcomes as shorter than in the other trials
which may be due to an increase in perceived agency in these
trials.



A simpler and more likely explanation may be that
encoding is different in the action trials compared to the
nonaction and baseline trials. The presence of the action may
be more distracting which would increase the error in the
initialization of the timing process. There may also be
increased noise in the recall process which was reflected in
an increased standard deviation for actions (SD = 115.57ms)
compared to nonaction (SD = 100.29ms) and baseline (SD =
78ms) trials. However, these explanations are not entirely
satisfactory, as the model fit is qualitatively better for
experiment 3A compared to experiment 3B and there is no
perceptual difference between the conditions in terms of
agency or encoding across the experiments. This may
represent a superficial and idiosyncratic feature of the
experiment rather than the reflection of something deeper.
We acknowledge that this is also not a satisfactory
explanation and recognize it as an area for future research.

Relatedly, the aggregated results across the studies also
suggest that the range of intervals used in the experiment may
have some effect on the pattern of errors. In experiment 3A,
the range of possible intervals was larger than in experiment
3B. Though the overall regression pattern was still the same,
the directionality of the average error was switched at the
middle timing interval: overestimation in 3A and
underestimation in 3B. At first blush, this seems like a
perplexing result. However, one should note that the overall
average estimation value was close to the midpoint of the
visual response scale: approximately 450ms for both studies
(454ms for 3A and 448ms for 3B). This suggests that there
may be a more general, environmental prior that participants
are using to make estimations in these experiments or that
they are being influenced by the range of responses presented
to them. This could explain the reversal in directionality of
the error for the middle timing interval across the two
experiments. It is also possible that the length of the general
prior differs depending on the type of action or the outcome
modality. Finding out requires further investigation.

The iteration of the model reported here assumed that all
participants used the same parameter values to make their
estimations. This is obviously an oversimplification and
represents a limitation in our implementation as it is likely
that the prior mean, variance, and memory noise values differ
from person to person. Future iterations of the model will
allow us to uncover individual differences in these
parameters which may elucidate these results.

Our model fits well with other models of time perception.
Specifically, the idea that memory may be a significant
influence for interval timing (and recall) is not new
(Addyman et al.,, 2011; Addyman & Mareschal, 2014;
Fountas & Zakharov, 2022; Jazayeri & Shadlen, 2010). The
novel contribution of our work lies in the application of this
simple Bayesian memory model in the context of temporal
binding as well as our suggestion that memory can account
for an effect commonly attributed to agency. We recognize
that this is not a novel concept in the time perception
literature more broadly and as such more complex models
could also be incorporated in future work.

Importantly, we also acknowledge that this model does not
necessarily exclude agency as a potential influence on the TB
effect. It could be that the mediating factor for a smaller prior
mean for actions is an increase in perceived agency, though
this seems unlikely since this result did not replicate across
the experiments. Though the relationship between agency
and binding remains unclear (Klaffehn et al., 2021; Suzuki et
al., 2019), one could speculate that when participants perform
voluntary actions, this may be preceded by a prior
expectation based on their experience that they can use to
make predictions or explicitly recall time intervals. Such
intervals may have developed as a result of their experienced
agency (i.e., “I expect an immediate interval in cases where |
feel in control”), or it may be that the intervals determine their
experienced agency (i.e., “if something happened that
quickly after my action then I must have caused it”).
Determining the answers to these intriguing questions will
require further research.

Additionally, it is important to note that our model is
compatible with approaches based on cue integration. These
approaches do not specify a memory process though one is
necessary to explain the results in a temporal binding task.
Cue integration attempts to explain the process by which an
individual optimally encodes and combines information from
multiple sources. Furthermore, it has been suggested that a
Bayesian process may explain how this is accomplished
thereby allowing us to experience agency (Legaspi &
Toyoizumi, 2019; Moore & Fletcher, 2012). Though it
remains unclear how cue integration can account for all
aspects of the binding effect (Wolpe et al., 2013), our model
could act as an extension to existing cue integration
approaches. In this combined model, memory content would
be updated using the cue integration process and then later
combined with the prior mean and variance and memory
noise parameter values in our model (using the linear
weighted combination) to arrive at an estimate of the interval
on each trial. This provides another interesting avenue for
future research.

Here we have provided evidence for a novel explanation of
the temporal binding effect. Approaching binding from the
perspective of memory allows us to account for the effect as
(partially) epiphenomenal. Although the role of memory does
not preclude that agency may also be involved, it needs to be
fully accounted for before claims about agentic processes can
be made. This perspective opens new avenues of research
regarding the role of memory in temporal binding tasks and
in our everyday experiences of control.
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